Tunable Bounding Volumes for Monte Carlo Applications
نویسندگان
چکیده
Luminaire sampling plays an important role in global illumination calculation using Monte Carlo integration. A conventional approach generates samples on the surface of the luminaire, resulting in rendered images with high variance of noise. In this paper, we present an efficient solid angle sampling technique using tunable bounding volumes for global illumination calculation. In contrast to the conventional approach, our technique derives samples from the solid angle subtended by the luminaire. In the construction process, we build a convex, frustum-like polyhedron as a bounding volume for a light source. Front-facing polygons of the bounding volume are then projected onto the unit hemisphere around the shaded point. These projected polygons represent the approximated solid angle subtended by the luminaire. The third step samples the projected spherical polygons on which a number of stratified samples are generated. We employ various types of light sources including ellipse, elliptic cylinder, elliptic cone and elliptic paraboloid. We perform our technique for Monte Carlo Direct Lighting and Monte Carlo Path Tracing applications. Under similar sample numbers, our technique produces images with less variance of noise compared to the conventional method. In addition, our technique provides roughly equal image quality in less execution time. Our approach is simple, efficient, and applicable to many types of luminaries for global illumination calculation.
منابع مشابه
Tunable Boundng Volumes for Elliptic Paraboloids
The tightness of the bounding volume is often difficult to adjust to suit different applications. In this paper, we present a technique to derive a tunable bounding volume for elliptic paraboloids, where the tightness can easily be controlled and altered at several levels. Our technique develops such a tunable bounding volume through the optimization process. Bounding volumes thus developed con...
متن کاملA comparison of neighbor search algorithms for large rigid molecules
Fast determination of neighboring atoms is an essential step in molecular dynamics simulations or Monte Carlo computations, and there exists a variety of algorithms to efficiently compute neighbor lists. However, most of these algorithms are general, and not specifically designed for a given type of application. As a result, although their average performance is satisfactory, they might be inap...
متن کاملEffect of Beta Particles Spectrum on Absorbed Fraction in Internal Radiotherapy
Objective(s): The purpose of this research is to study the effect of beta spectrum on absorbed fraction ( ) and to find suitable analytical functions for beta spectrum absorbed fractions in spherical and ellipsoidal volumes with a uniform distribution for several radionuclides that are commonly used in nuclear medicine.Methods: In order to obtain the beta particle absorbed fraction, Monte Carlo...
متن کاملTheory and Computation of Non-RRKM Lifetime Distributions and Rates in Chemical Systems with Three or More Degrees of Freedom
The computation, starting from basic principles, of chemical reaction rates in realistic systems (with three or more degrees of freedom) has been a longstanding goal of the chemistry community. Our current work, which merges tube dynamics with Monte Carlo methods provides some key theoretical and computational tools for achieving this goal. We use basic tools of dynamical systems theory, mergin...
متن کاملIterative Markov Chain Monte Carlo Computation of Reference Priors and Minimax Risk
We present an iterative Markov chain Monte Carlo algorithm for computing reference priors and minimax risk for general parametric families. Our approach uses MCMC techniques based on the Blahut-Arimoto algorithm for computing channel capacity in information theory. We give a statistical analysis of the algorithm, bounding the number of samples required for the stochastic algorithm to closely ap...
متن کامل